Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0263465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143523

RESUMO

BACKGROUND: Although domestic infestations by Triatoma infestans have been successfully controlled across Latin America, in areas of the Gran Chaco region, recurrent post-spraying house colonization continues to be a significant challenge, jeopardizing Chagas disease vector control and maintaining active Trypanosoma cruzi transmission. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the dynamics of triatomine reinfestation in a rural area of the Paraguayan Chaco, genetic characterization (based on 10 microsatellite loci and cytochrome B sequence polymorphisms) was performed on baseline and reinfestant T. infestans (n = 138) from four indigenous communities and adjacent sylvatic sites. House quality and basic economic activities were assessed across the four communities. Significant genetic differentiation was detected among all baseline triatomine populations. Faster reinfestation was observed in the communities with higher infestation rates pre-spraying. Baseline and reinfestant populations from the same communities were not genetically different, but two potentially distinct processes of reinfestation were evident. In Campo Largo, the reinfestant population was likely founded by domestic survivor foci, with reduced genetic diversity relative to the baseline population. However, in 12 de Junio, reinfestant bugs were likely derived from different sources, including survivors from the pre-spraying population and sympatric sylvatic bugs, indicative of gene-flow between these habitats, likely driven by high human mobility and economic activities in adjacent sylvatic areas. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that sylvatic T. infestans threatens vector control strategies, either as a reinfestation source or by providing a temporary refuge during insecticide spraying. Passive anthropogenic importation of T. infestans and active human interactions with neighboring forested areas also played a role in recolonization. Optimization of spraying, integrated community development and close monitoring of sylvatic areas should be considered when implementing vector control activities in the Gran Chaco.


Assuntos
Doença de Chagas/prevenção & controle , Controle de Insetos , Insetos Vetores/genética , Triatoma/genética , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Fluxo Gênico , Genótipo , Qualidade Habitacional , Controle de Insetos/métodos , Inseticidas , Paraguai/epidemiologia , Prevalência
2.
BMJ Open ; 11(7): e046325, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315791

RESUMO

INTRODUCTION: Humanitarian emergencies, of either natural or anthropogenic origins, are equivalent to major disasters, which can lead to population displacement, food insecurity and health system disruptions. Almost two-thirds of people affected by humanitarian emergencies inhabit malaria endemic regions, particularly the WHO African Region, which currently accounts for 93% and 94% of malaria cases and deaths, respectively. As of late 2020, the United Nations Refugee Agency estimates that there are globally 79.5 million forcibly displaced people, including 45.7 million internally displaced people, 26 million refugees, 4.2 million asylum-seekers and 3.6 million Venezuelans displaced abroad. METHODS AND ANALYSES: A systematic review and meta-analysis will be conducted to evaluate the impact of different vector control interventions on malaria disease burden during humanitarian emergencies. Published and grey literatures will be systematically retrieved from 10 electronic databases and 3 clinical trials registries. A systematic approach to screening, reviewing and data extraction will be applied based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Two review authors will independently assess full-text copies of potentially relevant articles based on inclusion criteria. Included studies will be assessed for risk of bias according to Cochrane and certainty of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Eligible studies with reported or measurable risk ratios or ORs with 95% CIs will be included in a meta-analysis. Subgroup analyses, including per study design, emergency phase and primary mode of intervention, may be performed if substantial heterogeneity is encountered. ETHICS AND DISSEMINATION: Ethical approval is not required by the London School of Hygiene and Tropical Medicine to perform secondary analyses of existing anonymous data. Study findings will be disseminated via open-access publications in peer-reviewed journals, presentations to stakeholders and international policy makers, and will contribute to the latest WHO guidelines for malaria control during humanitarian emergencies. PROSPERO REGISTRATION NUMBER: CRD42020214961.


Assuntos
Emergências , Refugiados , Humanos , Londres , Metanálise como Assunto , Projetos de Pesquisa , Revisões Sistemáticas como Assunto
3.
Parasit Vectors ; 10(1): 344, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724448

RESUMO

BACKGROUND: Despite large-scale reductions in Chagas disease prevalence across Central and South America, Trypanosoma cruzi infection remains a considerable public health problem in the Gran Chaco region where vector-borne transmission persists. In these communities, peridomestic animals are major blood-meal sources for triatomines, and household presence of infected dogs increases T. cruzi transmission risk for humans. To address the pressing need for field-friendly, complementary methods to reduce triatomine infestation and interrupt T. cruzi transmission, this study evaluated the systemic activity of three commercial, oral, single dose insecticides Fluralaner (Bravecto®), Afoxolaner (NexGard®) and Spinosad (Comfortis®) in canine feed-through assays against Triatoma infestans, the principal domestic vector species in the Southern Cone of South America. METHODS: Twelve healthy, outbred dogs were recruited from the Zoonosis Surveillance and Control Program in Santa Cruz, Bolivia, and randomized to three treatment groups, each containing one control and three treated dogs. Following oral drug administration, colony-reared second and third stage T. infestans instars were offered to feed on dogs for 30 min at 2, 7, 21, 34 and 51 days post-treatment. RESULTS: Eighty-five per cent (768/907) of T. infestans successfully blood-fed during bioassays, with significantly higher proportions of bugs becoming fully-engorged when exposed to Bravecto® treated dogs (P < 0.001) for reasons unknown. Exposure to Bravecto® or NexGard® induced 100% triatomine mortality in fully- or semi-engorged bugs within 5 days of feeding for the entire follow-up period. The lethality effect for Comfortis® was much lower (50-70%) and declined almost entirely after 51 days. Instead Comfortis® treatment resulted in substantial morbidity; of these, 30% fully recovered whereas 53% remained morbid after 120 h, the latter subsequently unable to feed 30 days later. CONCLUSIONS: A single oral dose of Fluralaner or Afoxolaner was safe and well tolerated, producing complete triatomine mortality on treated dogs over 7.3 weeks. While both drugs were highly efficacious, more bugs exposed to Fluralaner took complete blood-meals, and experienced rapid knock-down. Coupled with its longer residual activity, Fluralaner represents an ideal insecticide for development into a complementary, operationally-feasible, community-level method of reducing triatomine infestation and potentially controlling T. cruzi transmission, in the Gran Chaco region.


Assuntos
Doença de Chagas/veterinária , Transmissão de Doença Infecciosa/prevenção & controle , Doenças do Cão/prevenção & controle , Ectoparasitoses/veterinária , Insetos Vetores/efeitos dos fármacos , Inseticidas/administração & dosagem , Triatoma/efeitos dos fármacos , Administração Oral , Animais , Bolívia , Doença de Chagas/transmissão , Doenças do Cão/transmissão , Cães , Ectoparasitoses/tratamento farmacológico , Insetos Vetores/fisiologia , Inseticidas/farmacologia , Análise de Sobrevida , Triatoma/fisiologia , Trypanosoma cruzi
4.
Acta Trop ; 151: 80-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26215126

RESUMO

Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments can be explained by multiple parasite-host switches between vector populations and selection or bottleneck processes across the Motagua Valley, with a possible role for didelphids in domestic transmission.


Assuntos
Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/parasitologia , Triatoma/genética , Triatoma/parasitologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/parasitologia , Animais , Animais Domésticos/parasitologia , América Central , DNA Mitocondrial/genética , Guatemala , Interações Hospedeiro-Parasita , Humanos , Filogenia
5.
PLoS Negl Trop Dis ; 8(8): e3117, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25167160

RESUMO

Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared.


Assuntos
Tipagem de Sequências Multilocus/métodos , Parasitologia/métodos , Trypanosoma cruzi/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA